My Journey to Lean – Part 3 – Can Montie Gear go Lean?


Join me and talk about the first steps in considering how Montie Gear could go Lean.

Normally, when you think about Lean Manufacturing it is in the context of a large manufacturer.  Can a micro manufacturer go Lean?  Six Sigma?  Lets talk about it.

Comments welcome at


Here is the transcription from the podcast……………………………………………..

Audio file: 2015 May 17 – Lean Thoughts 2 – Lean at Montie Gear – Can it be done.mp3
Time transcribed: 17:58 minutes

[Opening music]

Hi. My name is Montie Roland. I’m with Montie Gear in Apex, North Carolina.

I want to spend a few minutes having a chat and a little bit of dialogue, and talk about the first steps towards implementing lean at Montie Gear.

So, I’ve been on this journey of learning lean. And, what does it mean? You know, what does it really mean? Not just, you know, overarching concept, but how do you make it work? You know, and how does combine work? How does, you know, work site visits work? How do MDI boards work? So, there’s all these things, these tools that lean uses to monitor your process and communicate to everyone.

So, now the trick is how to implement that in a very, very, small, micro-manufacturing environment. I’m going to make the argument that a lot of the tools in lean are going to apply even to a micro-manufacturer. And, at first, you sit there and say, “Well, yeah, if I want to tell John something, I’m going to lean across the table and tell him. I mean, there’s only three of us” – blah-blah-blah. Okay, so, I still think that there’s a place for lean within the organization because it helps you monitor your process. And in a small company, monitoring the process often doesn’t happen, because you assume it’s not worth it; you don’t have the manpower; you’re too busy putting out today’s fire; or just barely getting stuff out the door; keeping things resourced efficient. But, I think there’s more to it than that. So, one of the things that we want to do with lean is we want to optimize for flow first, and optimize for resource efficiency second. So, optimizing for flow means we want to get stuff out the door; optimizing as quickly as possible to the customer. So we want to add that value as quickly as possible. Whereas optimizing for resources means we want to do it as cost-effectively as possible. Well, the problem with putting too much of an emphasis on optimizing for resources is that it’s easy to create silos where people are thinking, Wow, I’m doing a great job. I’m cost efficient. But, then, what they’re doing isn’t necessarily getting the product out the door to the customer as quickly as possible, which interferes with cash flow. Because the quicker it gets to the customer, the quicker the cash flow happens, and the happier the customer, or more satisfied.

So, one of the things that we were already doing (and I didn’t realize how it already really fit into lean until after we started learning all this) is that . . . two things. One is that we were already doing single piece flow. So, in lean, lean’s going to most likely push you to single piece flow. So, single piece flow means that you build your products in a continuous manner down the line. So, in the past, you might have had facilities where someone with, let’s say, building a rifle – they’d make two-hundred-and-fifty barrels. And then everybody would go and they’d make two-hundred-and-fifty triggers. Then they’d go and make two-hundred-and-fifty stocks. So, what happens is that you’re putting all this in inventory while you’re finishing. This is kind of an extreme example. But with single piece flow, once we start the process of making a product, then it goes all the way through the process as quickly as possible. So, instead of having ten people making one part, we’re going to have ten people doing ten steps to make that part. So, now the advantage is that we have less inventory, and once we start making a product it goes through the line fairly quickly. So, if we were making all the pieces in a batch mode, then it takes a while when there’s a customer order for you to fill that order. Now, so, really quickly, there’s two ways that pull works. One is that you build to a certain level of inventory based upon your expected sales over a given period, and you maintain that inventory. So when that inventory is depleted, then there is a call to make more inventory, there’s an authorization to make more inventory, and that authorization results in the manufacturing floor making those parts to bring that level back up to that inventory level. The other way to do that would be you made-to-order, so you got an order for fifty, so now you make fifty. So, what we want to do is get that order through and out the door as quick as we can.

So, when we think about a slingshot and put it in that prism, a slingshot is a combination of batch and single piece flow manufacturing. For example, we’re not at a quantity level, where we make enough parts so that we paint every day. So as a result, we will make, for example, a bunch of slingshot frames, and then those will get cut at a vendor’s location. And they want to cut a minimum. You know, there’s work in setting it up, running it. And so they want to sell us a minimum of slingshots in a batch, otherwise it’s not cost effective to make them. So, there’s a batch of slingshots that’s cut on the waterjet, and then they go to paint as a batch. Now, and currently, we have two different processes that now I need to start rethinking now that I’m learning more about lean. One is that we’ll get the slingshots back; they go to the machine shop. Now, one of the things we haven’t invested in is specialized equipment to just drill the slingshot holes. So, they go to the machine shop in a batch and the holes get drilled in the slingshot frame. They come back to us and then we put the heli-coils in, and then they go out to be wrapped. So, so far, we’re not doing single piece flow; we’re doing small batches. But that’s driven by the fact we have to do it out-of-house, and it’s just not economical to do that as single piece flow – yet (the painting and the cutting). So, then what we do is those slingshots go to two places. Part of them go to the mountains, because we have capabilities there, and we anticipate inventory, we build to inventory, so probably two-thirds of them go to the mountains, get wrapped there. A third of them stay here. And the reason why we keep those here is to accommodate for anywhere that someone has a custom paracord color we want (because we wrap the handles with paracord), and it’s easy to do a color change. Or, we missed on our projections. So now this is a little bit of a challenge because now I end up, when they come back from the mountains after they get wrapped, so maybe two-thirds of my slingshots have already been wrapped in specific. And so those colors, it may be a third woodland camo, a third desert camo, a third black. So, now what I’ve got is I have frames that have paracord on them with heli-coils in them, and they’re ready for final assembly. So, generally, what we do is at this point we switch over and go to single piece flow. So, what I want to do is kind of put a bookmark here in our conversation, so we’re going to come back to this point.

So this is happening; our website, you know, our main customer contact point. And so folks are visiting the website and placing orders. So if you visit the Montie Gear website and you place an order, that order gets recorded on our website. And then, usually three times a week – Monday evening, Wednesday evening and Saturday, I’ll go and I’ll download new orders. So, when I download the orders, so I download it into a piece of middle-ware called T-HUB. T-HUB brings up a visual dashboard that shows me what has been paid for, what hasn’t been paid for, what has been shipped, what hasn’t been shipped, and what has been transferred to QuickBooks. And so I take this and I use T-HUB to print out a sales receipt. So I take those sales receipts and then we have a table. And so each sales receipt sits on that table and becomes the routing sheet for the order. What I didn’t realize in doing all this was I was already taking somewhat of a step towards a combine by how we set this up. So those sheets sit on the table. When Lars comes in, he instantly has a visual indicator of what needs to be built. Now, he can also go back to T-HUB and look it up. A lot of times, though, he doesn’t need to because I have already printed them out so he can take a look at it, and instantly know what he needs to build. So, this is a great way we’re communicating; so everybody knows how many orders we have that are unfulfilled. Now, kind of a next step on that would be to track days until shipment. So this is kind of one of the things that we need to do, is to track how long it’s been since the shipment.

Now another thing we need to do is automate the receipt of orders coming from Amazon. Right now, we don’t (and from eBay); right now we process those manually; so that’s a step. Once we get all that going through T-HUB, then we’ll have that computer visualization of, you know, what’s shipped and what hasn’t and what’s been paid for. And then we’ll also the table with a slip and a space for every order. So, as the order gets fulfilled, it gets passed to the next step. So Lars does single piece flow on the assembly – for example, the slingshot. Some products we build to inventory. Does single piece flow on the slingshot, puts it in a box, sets it for on the next table, where, when I come in then I take that box and ship it. Now, the beauty of it here is that we’re using this dashboard and we’re using the presence of this sheet of paper to show us, you know, so in an instant I know how packages I generally have to ship, because its sitting right there. So it’s very quick. Now, then what happens, I take that . . . after its shipped, I take that sales receipt and it goes into the “shipped sales receipt” or “done” pile. And then that gets filed away. And then, of course, the process of shipping it also means that T-HUB records it as being shipped. So, in this way, that’s a nice streamlined way of doing that. What we need to do to be more lean is to track, for example, number of days until shipment; you know, what was the reason why we didn’t ship on a day. So if Lars comes in, I need to track failures; you know, what we were missing, and then track how long it took to rectify that, who’s responsible. So maybe we don’t have a part or are missing some screws. So if we track that and find out that, Wow, we had seventy-seven times we were out of screws, and that held us up from shipping, then we need to keep more screws on hand; or we need to have a better way of monitoring that. So, at some point, what we need to do is actually to track our inventory so that there’s a card, so we can visualize, you know, what’s our safety inventory, what’s our normal consumption, so that when someone goes into the supermarket – which is where we store our parts that are ready to either for final assembly or to ship – when they go in that supermarket, then there’s an easy way to see what we’re low on. So that’s another aspect of lean that’s very common, is that you monitor that visually.

So, at this point, one of the things I’m starting to go after is to say, Okay, how do we monitor our process in a way that I can maintain (or everybody can help maintain), that’s not painfully expensive to monitor, but also lets everybody know where we are, how we’re doing, and gives us information for continuous improvement. So, that’s kind of the next step is to think that through; you know, is it a board? How do we track these things? And so, I’m open to suggestions. Anybody that wants to come by, make some suggestions on how to track this. You know, between X-Cart and T-HUB and QuickBooks, you know, what can we use to have a continuous monitoring of our process so that we can improve that; use our resources more wisely; and, you know, maximize our through-put flow-wise.

So, I hope this gives you a little insight into where we are now and kind of thinking and the process. It’s definitely a big challenge. A lot of these things, you’ve got to change at a very root level of how you do business and how you spend your day. It’s not just a matter of adding on a piece of software. A lot of times it’s a matter of just physically changing how you conduct your business. And that’s one of the tough things about lean, is that it’s a culture change. It’s not just something you throw over the top that adds a burden. If you do that, if all you do is just bolt it onto the top, you never really get a lot of benefit. You’ll never follow it. With lean, you’ve got to dig in and make a real in-depth change.

So, I hope this was a good talk for everybody. I appreciate you listening. Please don’t hesitate to send me an email. Come by the shop and you can see where we are in our lean transformation. And have a great day. Bye-bye.

[Closing music]


Montie Roland

Montie Roland is President of Montie Gear, a manufacturer of outdoor sporting equipment in Apex, NC. Montie is also employed at Pentair in Sanford, NC as a Mechanical Engineer on the New Product Development team. Montie enjoys finding innovative solutions to customer requirements. He has 15 years of experience engineering products in diverse market spaces including industrial, commercial and military. Montie earned a BS in Mechanical Engineering from North Carolina State University. He is also the President Emeritus of the Carolinas chapter of the Product Design Management Association ( and a founder of the RTP Product Development Guild (